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 Dimensions & units, dimensional analysis. 

 Process variables: physical state, overall mass balance, overall energy balance, 

overall momentum balance. 

 Concept of fluid behavior, Newtonian and non- Newtonian fluids, laminar and 

turbulent flow in circular tube. 

 Flow measurement. 

 Pitot tube, venturi menter, orifice meter, rota meter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. These lectures were prepared and used by me to conduct lectures for 2st year B. 

Tech. students. 

2. Theories, Figures, Problems, Concepts used in the lectures to fulfill the course 

requirements are taken from the general fluids references  

3. I take responsibility for any mistakes in solving the problems. Readers are 

requested to rectify when using the same. 

4. I thank the following authors for making their books & lectures available for 

reference 

A. Ali 

References: - 

1. "Fluid mechanics" by V.L. Streeter, 9th Edition. 

2. "Fluid Mechanics" Frank. M. White, 5th edition. 

3. "Fundamentals of Fluid Mechanics" 5th edition B. R. Munson et al - John Wiley 

and Sons. 

4. "Fluid Mechanics and Hydraulic Machines" 5th edition Er.R.K. RAJPUT - . 

CHAND & COMPANY LTD. RAM NAGAR, NEW DELHI-110 055. 

5. " جامعة البصرة ميكانيك الموائع" د. كامل الشماع طبعة دار الكتب في    

6. Lectures of other instructors in the collage & department.  

7. Any other references in this field. 
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Chapter 1 

Fluids Mechanics 

What is fluid mechanics? 

Fluid mechanics may be defined as that branch of Engineering-science 

which deals with the behavior of fluid under the conditions of rest and 

motion. 

The fluid mechanics may be divided into three parts: Statics, kinematics 

and dynamics 

Statics. The study of incompressible fluids under static conditions is 

called hydrostatics and that dealing with the compressible static gases is 

termed as aerostatics. 

Kinematics. It deals with the velocities, accelerations and the patterns of 

flow only. Forces or energy causing velocity and acceleration are not dealt 

under this heading. 

Dynamics. It deals with the relations between velocities, accelerations of 

fluid with the forces or energy causing them. 

Properties of Fluids: 

The matter can be classified on the basis of the spacing between the 

molecules of the matter as follows: 

 Solids, the molecules are very closely spaced whereas 

 Liquids (Liquid state, Gaseous state) the spacing between the 

different molecules is relatively large and in gases the spacing 

between the molecules is still large. 

1 Fluid 

A fluid may be defined as follows: 

“A fluid is a substance which is capable of flowing.” 

or 
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“A fluid is a substance which deforms continuously when subjected to 

external shearing force.” 

Ideal fluids. An ideal fluid is one which has no viscosity and surface 

tension and is incompressible. In true sense no such fluid exists in nature. 

However fluids which have low viscosities such as water and air can be 

treated as ideal fluids under certain conditions. The assumption of ideal 

fluids helps in simplifying the mathematical analysis. 

Real fluids. A real practical fluid is one which has viscosity, surface 

tension and compressibility in addition to the density. The real fluids are 

actually available in nature. 

Continuum. A continuous and homogeneous medium is called continuum. 

From the continuum view point, the overall properties and behavior of 

fluids can be studied without regard for its atomic and molecular 

structure. 

Dimensions: 

Mass Length Time Force 

M L T F 

Types of Systems: 

i:   M-L-T 

ii:  F-L-T 

Units: 

System/Quantity Mass Length Time Force 

Standard International (S.I) kg m sec N 

British System (English) slug ft sec lb 

French system (c.g.s) gm cm sec dyne 

Kilogram weight system kg m sec kgw 

   



f Fluidso PropertiesIntroduction and  General Chapter one 

Page 5 of 63 

Length Mass 

1 ft      = 12  inches or 12” 1 slug      = 14.59 kg 

1 inch  =  2.54 cm  1 ton      = 1000 kg 

1 ft      =               m 1 kg        = 1000 g 

mile    = 1609 m   

Volume  Gravitational acceleration  

1 m3  = 1000 liters = 106 cm3  g = 9.81 m/sec2 =     32.2    ft/sec2 

1 gallon    3.785 liters     

Force 

1 N        =  1 kg.m/sec2 

1 N        =  105 dyne  

1 N        = (1/4.44)  lb 

1 N        = (1/9.81)  kgw 

1 kgw    =  2.20462  lb 

 

2 Liquids and Their Properties 

The properties of water are of much importance because the subject of 

hydraulics is mainly concerned with it. Some important properties of water 

which will be considered are: 

(i) Density, 

(ii) Specific gravity, 

(iii) Viscosity, 

(iv) Vapor pressure, 

(v) Cohesion, 

(vi) Adhesion, 

(vii) Surface tension, 

(viii) Capillarity, and 

(ix) Compressibility 
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2.1 DENSITY 

 Mass Density 

Its units are kg/m3 , i.e.,  𝜌 =
mass

Volum
=

m

V
 

 Weight Density 

also known as specific weight, weight per unit volume at the 

standard temperature and pressure. It is usually denoted by w., 

  i.e.,  𝑤 = g 

 Specific volume 

     i.e.,  𝑣 =
V

m
 

2.2 SPECIFIC GRAVITY 

For liquids, the standard fluid is pure water at 4°C, 

 i.e.,  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 =
Specific weight of liquid

Specific weight of pure water
=

𝑊𝑙𝑖𝑞𝑢𝑖𝑑

𝑊𝑤𝑎𝑡𝑒𝑟
 

Relative density or specific gravity (S of S.g): the ratio of mass density of 

a substance to a standard mass density. Generally, the standard mass 

density is taken of water at  4 oC.  ρwtare  at 4oC = 1000 kg/m3 . 

Specific Volume (v): is the reciprocal of the density; that is, the volume 

occupied by unity mass of fluid 

𝑣 =
1

𝜌
  , m3/kg 

 Specific weight (γ or w): is the weight per unit volume. 

𝛾 = 𝑤 =
𝑤𝑒𝑖𝑔ℎ𝑡

𝑉𝑜𝑙𝑢𝑚𝑒
=

𝑚𝑔

𝑉
= 𝜌𝑔 

Units: N/m3 
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2.3 Viscosity 

Property of a fluid which determines its resistance to shearing stresses. It 

is a measure of the internal fluid friction which causes resistance to flow. 

It is primarily due to cohesion and molecular momentum exchange 

between fluid layers, and as flow occurs, these effects appear as shearing 

stresses between the moving layers of fluid. 

An ideal fluid has no viscosity. 

The viscosity together with relative velocity causes a shear stress acting 

between the fluid layers. This shear stress is proportional to the rate of 

change of velocity with respect to y. It is denoted by τ (called Tau)  

 

𝜏 = 𝜇
𝑑𝑢

𝑑𝑦
 

 

 

Now, μ is called the viscosity (or dynamic viscosity) of fluid, and the 

relation above is the Newton’s law of viscosity.  

A fluid is a substance that deforms continuously when subjected to a 

shear stress. 

Shear force, the force component tangent to a surface, and this force 

divided by the area of the surface is the average shear stress over the 

area.  

Note: 

The fluid in immediate contact with a solid boundary has the same velocity 

as the boundary i.e. there is no slip at the boundary.  
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The fluid in the area a-b-c-d flows to the new position a-b*-c*-d, each fluid 

particle varying uniformly from zero at the fixed plate to U at the moving 

plate.   

𝐹𝛼
𝐴 𝑈

ℎ
 

Where A is the surface area of the moving plate. The proportionality 

constant depends on fluid type, it is generally termed as μ. 

𝐿𝑒𝑡    𝜏 =
𝐹

𝐴
∶ 𝑖𝑠 𝑡ℎ𝑒 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 

∴  𝜏 = 𝜇
𝑈

ℎ
∶ 𝑖𝑠 𝑡ℎ𝑒 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 

 𝑈

ℎ
 : is the ratio of angular velocity of line ab or it is the rate of 

deformation of fluid 

𝑈

ℎ
=

𝑑𝑢

𝑑𝑦
  𝑓𝑜𝑟 𝑙𝑖𝑛𝑒𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑛𝑙𝑦     

→ 𝜏 = 𝜇
𝑑𝑢

𝑑𝑦
= 𝜇

𝑈

ℎ
     

 

Units of viscosity: 

μ =τ/(U/h) : (N/m2)/(m/sec/m) = 
𝑁

𝑚2 . 𝑠𝑒𝑐 = Pa. sec (in SI) 

Fixed plate  

Moving plate  
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or  𝜇 =  
𝑔𝑚

𝑐𝑚.𝑠𝑒𝑐
=

𝑑𝑦𝑛𝑒 𝑠𝑒𝑐.

𝑐𝑚2 = 𝑝𝑜𝑖𝑠𝑒 

1 poise = 0.1 Pa. sec. 

Kinematic viscosity (ν): is the dynamic viscosity μ divided by the density ρ 

𝜈 =
𝜇

𝜌
 

Units:  

  
𝑁. 𝑠𝑒𝑐/𝑚2

𝑘𝑔/𝑚3
=

𝑚2

𝑠𝑒𝑐
 

1cm2/sec = St (Stokes) 

1 St = 10-4 m2/sec 

1 cSt = 10-6 m2/sec 

 

Newton’s Law of Viscosity 

This law states that the shear stress(τ)on a fluid element layer is directly 

proportional to the rate of shear strain. The constant of proportionality is 

called the co-efficient of viscosity. 

𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙𝑙𝑦, →           𝜏 = 𝜇
𝑑𝑢

𝑑𝑦
 

 

Types of Fluids  

The fluids may be of the 

following types: Refer to Fig. 

1.Newtonian fluids: These 

fluids follow Newton’s viscosity 

equation. For such fluids µ does 

not change with rate of 

deformation. Examples. Water, 

kerosene, air etc. 
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2. Non-Newtonian fluids:  Fluids which do not follow the linear relationship 

between shear stress and rate of deformation. Such fluids are relatively 

uncommon. Examples. Solutions or suspensions (slurries), mud flows, 

polymer solutions, blood etc. 

3 .Plastic fluids. In the case of a plastic substance which is non-Newtonian 

fluid an initial yield stress is to be exceeded to cause a continuous 

deformation. These substances are represented by straight line intersecting 

the vertical axis at the “yield stress”. 

 An ideal plastic (or Binigham plastic) has a definite yield stress and 

a constant linear relation between shear stress and the rate of angular 

deformation. Examples: Sewage sludge, drilling muds etc. 

 A thyxotropic substance, which is non-Newtonian fluid, has a non-

linear relationship between the shear stress and the rate of angular 

deformation, beyond an initial yield stress. The printer’s ink is an 

example of thyxotropic substance. 

4. Ideal fluid. An ideal fluid is one which is incompressible and has zero 

viscosity Thus an ideal fluid is represented by the horizontal axis (τ = 0) 

A true elastic solid may be represented by the vertical axis of the diagram. 

Summary of relations between shear stress (τ) and rate of angular 

deformation for various types of fluids: 

 

 

 

 

http://easyengineering.net/
http://easyengineering.net/
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Effect of Temperature on Viscosity 

Viscosity is effected by temperature. The viscosity of liquids decreases but 

that of gases increases with increase in temperature. Why? 

 

Effect of Pressure on Viscosity 

The viscosity under ordinary conditions is not appreciably affected by the 

changes in pressure. However, the viscosity of some oils has been found to 

increase with increase in pressure. 

Read Examples (1.6-1.20) 
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Example 1.1: Determine the shear stress exerted on the bottom fixed 

surface shown in figure. 

 

Example 1.2: Determine the dynamic viscosity of fluid between the 75 

mm-diameter shaft and sleeve shown in figure. The clearance between the 

shaft and sleeve is 0.07 mm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 1.3: A disk of radius R 

rotates at angular velocity ω inside an 

oil bath of viscosity μ as shown in 

figure. Derive an expression for the 

viscous torque on the disk. Neglect 

shear stress on the outer disk end. 

ω 

h 
Oil 

200 mm 

U = 0.2 m/s F = 100 N 

0.07 mm 
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Sol: T=
𝜇𝜔𝜋 𝑅4

ℎ
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2.4 SURFACE TENSION AND CAPILLARITY 

2.4.1 Surface Tension 

Cohesion means intermolecular attraction between molecules of the same 

liquid. It enables a liquid to resist small amount of tensile stresses. 

Cohesion is a tendency of the liquid to remain as one assemblage of 

particles. “Surface tension” is due to cohesion between particles at the free 

surface. 

Adhesion. Means attraction between the molecules of a liquid and the 

molecules of a solid boundary surface in contact with the liquid. This 

property enables a liquid to stick to another body. 

Capillary action is due to both cohesion and adhesion. 

Surface tension (σ) is caused by the force of cohesion at the free surface. 

A liquid molecule in the interior of the liquid mass is surrounded by other 

molecules all around and is in equilibrium. 

Surface tension of liquid is due to the force of attraction between similar 

molecules, called cohesion, and those between different molecules, called 

adhesion. 

 The interior molecules are in balance. 

 Near a free surface, the cohesion force between liquid molecules is 

much greater than that between an air molecule and a liquid 

molecule, hence, there is a resultant force on a liquid molecule 

acting toward the interior of the liquid. This force called surface 

tension. 

 It is the force that holds a water droplet or mercury globule together.  

 It is the force that form a film at the interface between a liquid and 

gas or two immiscible liquids 
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 This force is proportional to the product of the surface tension 

coefficient σ and the length of the free surface.   

 

Surface tension force = 𝜎 ∗ length of the free surface 

 

 

 

 

 

Pressure Inside a Water Droplet, Soap Bubble and a Liquid Jet 

For a spherical droplet: radius R, internal 

pressure P, the force balance on a 

hemispherical free body gives: 

𝜋 𝑅2𝑃 = 2𝜋 𝑅 𝜎 

∴ 𝑃 =
2 𝜎

𝑅
 

 

 

For a Soap(or hollow)bubble: Soap 

bubbles have two surfaces on which 

surface tension σ acts. free body 

gives: 

 
𝜋

4
𝑑2𝑃 = 2(𝜋 𝑑 𝜎) 

 

∴      𝑃 =
8

𝑑
 𝜎 

 

Liquid 

Air 

Free surface 

 R2 P 

2 R 
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Fore a cylindrical liquid jet of radius R, 

the force balance gives: 

 

2𝑅𝐿 𝑃 = 𝜎 2𝐿 

∴ 𝑃 =
 𝜎

𝑅
 

Hence, the action of surface tension is to 

increase the pressure within a droplet of 

liquid or Soap bubble or within a small liquid jet.  

See Example 1.22-1.26 

 

2.4.2 Capillarity: Capillarity is a phenomenon by which a liquid 

(depending upon its specific gravity) rises into a thin glass tube above or 

below its general level. This phenomenon is due to the combined effect of 

cohesion and adhesion of liquid particles. 

It is useful to re-mention here the attraction force types. 

 

 

 

 

 

 

 

 

 

 

Adhesion    >  Cohesion 

Meniscus concave 

Cohesion > Adhesion 

Meniscus convex 

  

Attraction force 

Adhesion: between the fluid and the boundary 

 

Cohesion: between the fluid particles  

 2 L 

P (2RL) 
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Capillarity in a tube: 

Balancing forces in y direction: 

1- Surface tension force = 𝜋𝑑𝜎 𝑐𝑜𝑠𝜃 

2- Force due to weight = 𝑚𝑔 = 𝜌𝑉𝑔 = 𝜌
𝜋

4
𝑑2ℎ𝑔 

 𝜋𝑑𝜎 𝑐𝑜𝑠𝜃 = 𝜌
𝜋

4
𝑑2ℎ𝑔 

∴ ℎ =
4𝜎 cos 𝜃

𝜌𝑔𝑑
 

For example: the surface tension coefficient of water  

Equals to 0.074 N/m at 20 oC. 

For water and glass :θ≈0. (θ=Angle of contact of the water surface) 

Hence the capillary rise of water in the glass tube  

∴ ℎ =
4𝜎

𝜌𝑔𝑑
 

Bulk Modulus of compression (E) 

𝐸 =
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑠𝑡𝑟𝑎𝑖𝑛
=

𝑑𝑃

|
𝑑𝑉
𝑉

|
 

Units: N/m2 

Perfect Gas  

The perfect gas is defined as a substance that satisfies the perfect gas law. 

P v =  R T ,                or       P = ρ R T 

T: must be absolute (in Kelvin) 

R is the gas constant (J/kg.K) 

P: absolute pressure (N/m2) 

Vapor pressure (Pv) 

The pressure value at which the liquid molecules escaping from the liquid 

surface. The vapor pressure of a given fluid increases with temperature. 

θ 

h 

σ σ 

d 
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For example, table below, displays some values of water vapor pressures at 

different temperatures, 

Temperature 

(oC) 

Pv (Pa) 

0 588.3 

5 882.54 

10 1176.36 

 

 

 

See Example 1.27-1.40 

HW.01 SOLVE PROBLEM PAGE 41-42 
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Chapter Two 

FLUID STATICS 

PRESSURE MEASUREMENT 

 

 

 

Gases: occupy the whole volume of container. The viscosity increases with 

increasing temperature, due to the increase of momentum change between 

layers.  

Liquids: form a free surface. The viscosity decreases with increasing 

temperature. Because in liquids, the molecules are so much closer than in 

gases, so with temperature increase, the cohesive forces hold the molecules 

may decrease.    

 

2.1. Pressure of A Liquid  

When a fluid is contained in a vessel, it exerts force at all points on the sides 

and bottom and top of the container. The force per unit area is called 

pressure. 

It is the normal force pushing against a plane area divided by the area. It 

results from the continuous movement of molecules.  

 

𝑃 =
𝑑𝐹

𝑑𝐴
 

Units: 

 N/m2 (Pascal), lb/ft2 (psf), lb/in2 (psi), or bar 

 1 bar = 105 Pascal 

 Sometimes, the pressure is expressed as a pressure head, m-fluid 

Fluids 

Gases Liquids 

dA dF 
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 In industrial, they may used 
𝑘𝑔

𝑐𝑚2 =
𝑘𝑔𝑓

𝑐𝑚2 =
1×9.81 𝑁

𝑐𝑚2 = 98.1 𝑘𝑃𝑎 

2.2. Pressure Head of a Liquid 

Consider a vessel containing liquid,  

Now, Total pressure on the base of the cylinder = Weight of liquid in the 

cylinder 

 

𝐹. 𝐴 = 𝛾. 𝐴. ℎ 

∴  𝐹 = 𝛾. ℎ 

∴ ℎ =
𝐹

𝛾
 

𝑤ℎ𝑒𝑟𝑒 𝛾 = 𝑤 = (𝜌𝑔) 

2.3. Pascal’s Law (Pressure Acting on A Point) 

It can be proven that the pressures acting on a point at rest, has the same 

value in all directions. Let us assume a particle of a fluid at rest, with free 

body diagram shown in figure.  

 

 

 

 

 

 

 

 

 

 

 

 

θ 
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Note: Pressure doesn’t vary horizontally, provided that the fluid is 

connected. To illustrate this statement, we may refer to the figure below.  

 

Points a, b, c, and d are at equal depths in water and therefore have 

identical pressures. Points A, B, and C are also at equal depths in water and 

have identical pressures higher than a, b, c, and d. Point D has a different 

pressure from A, B, and C because it is not connected to them by a water 

path. 
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2.4. Absolute and Gauge Pressures 

Atmospheric pressure: 

The atmospheric air exerts a normal pressure upon all surfaces with which 

it is in contact, and it is known as atmospheric pressure. The atmospheric 

pressure is also known as ‘Barometric pressure’. 

Gauge pressure: 

It is the pressure, measured with the help of pressure measuring instrument, 

in which the atmospheric pressure is taken as datum. 

Gauges record pressure above or below the local atmospheric pressure, 

since they measure the difference in pressure of the liquid to which they are 

connected and that of surrounding air.  

Absolute pressure: 

It is necessary to establish an absolute pressure scale which is independent 

of the changes in atmospheric pressure. A pressure of absolute zero can 

exist only in complete vacuum. 

A schematic diagram showing the gauge pressure, vacuum pressure and the 

absolute pressure is given in Fig.. 

 

 

 

 

 

 

 

Mathematically: 

i.e.,        𝑃𝑎𝑏𝑠 = 𝑃𝑎𝑡𝑚 + 𝑃𝑔     &   𝑃𝑣𝑎𝑐 = 𝑃𝑎𝑡𝑚 − 𝑃𝑎𝑏𝑠 

See Example 2.1-2.10 
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2.5. Measurement of Pressure 

The pressure of a fluid may be measured by the following devices: 

1- Manometers: 

devices used for measuring the pressure at a point in a fluid by balancing 

the column of fluid by the same or another column of liquid. These are 

classified as follows: 

(a) Simple manometers: 

(i) Piezometer,  

(ii)U-tube manometer, and  

(iii)Single column manometer. 

(b)Differential manometers. 

2- Mechanical gauges: 

in which the pressure is measured by balancing the fluid column by spring 

(elastic element) or dead weight. Generally, these gauges are used for 

measuring high pressure and where high precision is not required. Some 

commonly used mechanical gauges are: 

(i)Bourdon tube pressure gauge, 

(ii)Diaphragm pressure gauge, 

(iii)Bellow pressure gauge, and 

(iv)Dead-weight pressure gauge. 

 

 



MeasurementPressure  TwoChapter  

Page 24 of 63 

Manometers: devices that employ liquid columns for determining 

differences in pressure: 

1- Piezometer Manometer: The simplest type 

of manometer consists of a vertical tube, 

open at the top, and attached to the container 

in which the pressure is required, it is used 

for small positive pressures.  

 

 

 

 

2- U-Tube Manometer: This type of 

manometer consists of a tube formed 

into the shape of a U filled with the 

same fluid to be measured. It is used 

for small positive and negative 

pressures. 

 

 

3- U-Tube Manometer with Multi-

Liquids: It is U tube with using 

another liquid(s) of greater gravity. It 

is used for greater positive and 

negative pressure. 
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A 

General Procedure in Working with Manometers Problems. 

1- Start at one end and write the pressure there. 

2- Add to the started pressure the change in pressure in the same unit 

from one meniscus (liquid surface) to the next (plus for lower 

meniscus and minus for higher) 

3- Continue until the other end of the gage, and equate the expression to 

the pressure at that point. 

𝑃𝐴 + 𝛾1ℎ1 − 𝛾2ℎ2 − 𝛾3ℎ3 = 𝑃𝐵 

Or,  𝑃𝐴 − 𝑃𝐵 = −𝛾1ℎ1 + 𝛾2ℎ2 + 𝛾3ℎ3 

Note: If any tube section is filled with gas, then the elevation in this section 

can be ignored because the specific weight (γ) of gases is much less than 

liquids. For example, in the figure shown, if fluid 1 is a gas, then the 

manometer relation will be: 

𝑃𝐴 − 𝑃𝐵 = 𝛾2ℎ3 + 𝛾3ℎ3 
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Inclined Tube Manometer: this type of manometer is designed to increase 

the accuracy of pressure measurements. 

 

 

 

 

 

 

 

𝑃𝐴 + 𝛾1ℎ1 − 𝛾2𝑙 sin 𝜃 − 𝛾3ℎ3 = 𝑃𝐵 

 

Mercury Barometer: it consists of a glass tube 

closed at one end and filled with mercury, and 

inverted so that the open end is submerged in 

mercury. It is used to measure the atmospheric 

pressure, PA 

𝑃𝐴 = 𝛾𝐻𝑔ℎ + 𝑃𝑉 

PV: is the pressure of mercury vapor 
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Example 2.3: For the closed tank shown in figure, the pressure at point A is 95 kPa 

absolute, what is the absolute pressure at point B? 

 

 

 

 

 

 

 

 

 

 

 

Example 2.4: The mercury 

manometer shown indicates a 

differential reading of 0.30 m. 

Determine the differential pressure 

between pipe A and pipe B. What is 

the pressure value in pipe B when the 

pressure in pipe A is 30-mm Hg 

vacuum? (Soil=0.83, SHg=13.6) 
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Example 2.5: For the inverted manometer shown in figure, if PB-PA= 90 kPa, what must 

the height H be? 

 

 

 

 

 

 

 

 

 

 

 

Bourdon Gauge 

Bourdon gauge is a typical device used for measuring (high as well as low pressures) 

gauge pressure. It consists of a hollow, curved, flat metallic tube closed at one end; the 

other end in connected to the pressure to be measured. A scaled plate and pointer are 

needed for indication. 

 

 

 

 

 

 

 

 

 

 

 

 

 

HW.02 SOLVE PROBLEM PAGE 94-96 
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Chapter 3 

Forces on Immersed Surfaces  

In the design of submerged devices and objects, surfaces, dams, surfaces on ships, and 

holding tanks, it is necessary to calculate the magnitude and location of 

forces that act on both plane and curved surfaces. This subject will be 

divided into two titles; plane and curved surfaces. 

1- Plane Surfaces (Horizontal; Vertical and Inclined Surface) 

 

  

  

h 

ℎത 

𝑦 

𝑦ത 𝑦𝑝 

O Free surface 

Cp: Center of pressure force 

CG: center of geometry 
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The total force of the liquid on the plane surface is found by integrating the 

pressure over area.  

𝐹 = ∫ 𝑃 𝑑𝐴

𝐴

 

Using gauge pressure, the local pressure is 

𝑃 =  𝛾ℎ = 𝛾 𝑦 𝑠𝑖𝑛𝜃 

∴ 𝐹 = ∫ 𝛾 𝑦 𝑠𝑖𝑛𝜃 𝑑𝐴
𝐴

  

∴ 𝐹 = 𝛾 𝑠𝑖𝑛𝜃 ∫ 𝑦 𝑑𝐴

𝐴

 

h is measured vertically down from the free surface and y is measured from 

point O on the free surface. 

We know that the distance to a centroid is defined as: 

𝑦ത =
1

𝐴
∫ 𝑦 𝑑𝐴

𝐴

 

∴ 𝐹 = 𝛾 𝑠𝑖𝑛𝜃 𝑦ത𝐴 =  𝛾 ℎത 𝐴 = 𝑃𝑐𝐴 

Where Pc is the pressure at the centroid.  

How to find the location of the resultant force F? 

Generally, we termed to the location of the resultant force by yp. Firstly, we 

should defined the well-known rule that says: the sum of the moments of all 

the infinitesimal forces acting on the area A must equal the moment of the 

resultant force. 

𝑦𝑝𝐹 = ∫ 𝑦  𝑃𝑑𝐴 = 

𝐴

∫ 𝑦  𝛾 𝑠𝑖𝑛𝜃 𝑦 𝑑𝐴 = 𝛾 𝑠𝑖𝑛𝜃 ∫ 𝑦 2 𝑑𝐴 

𝐴

 

𝐴

 

But, 𝐼𝑥 = ∫ 𝑦 2 𝑑𝐴 
𝐴

 is the second moment of area about x-axis 
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𝑦𝑝𝐹 = 𝛾 𝑠𝑖𝑛 𝜃 𝐼𝑥 

∴ 𝑦𝑝 =
𝛾 𝑠𝑖𝑛𝜃 𝐼𝑥

𝛾 𝑦ത 𝐴 𝑠𝑖𝑛𝜃
 

𝐼𝑥 = 𝐼𝑥𝑐 + 𝐴𝑦ത2 (Parallel axis theorem), 

Where Ixc is the second moment of area about the centroid axis.  

∴ 𝑦𝑝 =
𝐼𝑥𝑐 + 𝐴𝑦ത2

 𝑦ത 𝐴 
 

∴ 𝑦𝑝 = 𝑦ത +
𝐼𝑥𝑐

 𝑦ത 𝐴 
 

This equation clearly shows that the resultant force F doesn’t pass through 

the centroid but it always below it.  
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Note for horizontal and vertical surfaces: 

 Horizontal surface 

 

 

 

 

𝑤ℎ𝑒𝑟𝑒 :  𝑃𝑐 = 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑔𝑎𝑡𝑒 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =  𝛾. ℎ𝑝  𝑓𝑜𝑟 𝑠𝑎𝑚𝑒 𝑓𝑙𝑢𝑖𝑑  

𝐴 = 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑎𝑡𝑒  

 Vertical surface 

 

 

𝑭 =  𝑷𝒄. 𝑨 

𝒚𝒑 = 𝒉 = 𝒚𝒄 

𝑷𝒄 = 𝜸. 𝒉  

𝑷𝒄 = 𝜸. 𝒚𝒄 
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𝑤ℎ𝑒𝑟𝑒 :  𝐼𝑥𝑐 = 𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑔𝑎𝑡𝑒 𝑎𝑏𝑜𝑢𝑡 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑   

 

 

𝑭 =  𝑷𝒄. 𝑨 

𝒚𝒑 = 𝒚𝒄 + 𝒚  =   𝒚𝒄 +
𝑰𝒙𝒄

𝒉𝒄. 𝑨
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Example 3. A circular opening, 2.5 m diameter, in a vertical side of tank is 

closed by a disc of 2.5 m diameter which can rotate about a horizontal diameter. 

Determine: 

(i) The force on the disc; 

(ii) The torque required to maintain the disc in equilibrium in vertical 

position when the head of water above horizontal diameter is 3.5 m. 
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EXAMPLE: 

The gate in Fig. below is 5 ft wide, is hinged at point B, and rests against a smooth 

wall at point A. Compute (a) the force on the gate due to seawater pressure, (b) the 

horizontal force P exerted by the wall at point A, and (c) the reactions at the hinge B. 
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See Examples (3.1-3.31) Ref. 4. 

Example: A 60 x 80 cm 

window on a submersible 

lake. If it is on a 45o angle 

with horizontal, what force 

applied normal to the window 

at the bottom edge in needed 

to just open the window, if is 

hinged at the top edge when 

the top edge is 10 m below 

the surface? 

F=24.445 KN   ans. 

 

 

F 

openF 

10 m 

o45 

60 cm 

80 cm 

Hinge 
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Example: find the force necessary to 

hold the gate in the position shown 

in figure.  

F=50.95 KN   ans.  

F holdF 

o53 

2 m 

3 m 
Hinge 

5m 

Water 
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Example: find the force 

necessary to hold the 

gate in the position 

shown in figure. 

  
F holdF 

o53 

2 m 

3 m 
Hinge 

4m 

Water 
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2- Curved Surfaces 

We know that the pressure force is normal on each element of the surface. For curved 

surfaces, we calculate the components (horizontal and vertical) rather than the 

resultant, this for simplicity. 

2-1 The horizontal component 

𝐹ℎ = ∫ 𝑑𝐹ℎ

𝐴

=  ∫ 𝑃 𝑑𝐴

𝐴

𝑐𝑜𝑠𝜃 =  ∫ 𝛾 𝑦 𝑑𝐴

𝐴

𝑐𝑜𝑠𝜃 

𝐹ℎ =  𝛾 ∫ 𝑦 𝑑𝐴ℎ

𝐴

 

∴ 𝐹ℎ =  𝛾 𝑦ത 𝐴ℎ 

Where Ah is the vertical projection of the curved area and 𝑦ത is the centroid of the 

projected area.  

 

 

 

 

 

 

 

2-2 The vertical component 

𝐹𝑉 = ∫ 𝑑𝐹𝑉 =  ∫ 𝑃 𝑑𝐴 𝑠𝑖𝑛𝜃 =  ∫ 𝛾 𝑦 𝑑𝐴 𝑠𝑖𝑛𝜃 

𝐹𝑉 = 𝛾 ∫ 𝑦 𝑑𝐴𝑉 

The last integral represents the fluid volume over the curved surface until the free 

surface (at which the pressure is atmospheric), hence we can say that the vertical 

component is the fluid weight over the curved surface.   

𝐹𝑉 = 𝛾 𝑉 

y 

hF 

hFd 

vFd dF 

dA hAd 

C 
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 The fluid volume V is found by extending the curved surface to the free surface 

level (P = Patm = 0). 

 When the liquid is below the curved surface, an imaginary or equivalent free 

surface can be constructed. The weight of the imaginary volume of liquid 

vertically above the curved surface is then the vertical component of pressure 

force on the curved surface. 

  The imaginary liquid must be of the same specific weight as the liquid in contact 

with curved surface.  

 

 

 

 

 

 

 

 

 

 

Note: the location of the vertical component action must pass through the centroid of 

the effective volume.  

 

See Examples (3.32-3.42) Ref. 4. 

 

 

 

 

 

 

 

Liquid effV 

vF 

effV 

Liquid 

vF 

Liquid below the curved surface Liquid above the curved surface 
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Example .A hemisphere projection of 

diameter0.6 m exists on one of the vertical sides 

of a tank. If the tank contains water to an 

elevation of 1.5 m above the centre of the 

hemisphere, calculate the vertical and horizontal 

forces acting on the projection. 

Solution 
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Example. shows a curved surface LM, which is in the form of a quadrant of a circle of 

radius 3 m, immersed in the water. If the width of the gate is unity, calculate the 

horizontal and vertical components of the total force acting on the curved surface. 

Solution. 

Radius of the gate=3 m 

Width of the gate=1 m 

LO=OM =3 m 

Horizontal component of total force,  

FH: Horizontal force exerted by water on gate is given by, 

Fh=Total pressure force on the projected area of curved surface 

LM on vertical plane = Total pressure force on OM 

(projected area of curved surface on vertical plane) 
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Example: Find the force F required to hold the gate in the position shown in figure. 

The gate is 5 m wide.   

 

F=437210.7N            ans 

 

 

 

 

 

 

 

 

 

Example: Find the force F needed to just open the gate shown. The gate is 4 m wide. 

  

 

 

F=549228.7422  N            ans 

6 m 

2m 

Water 

F 

Hinge 

Wate

r 
Hinge 5 m 

0.8 m 

F 
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Chapter 4 

Buoyancy and Stability 

Buoyancy: resultant force exerted on a body by static fluid which is submerged or 

floating. It always acts vertically upward.  

 

 

 

 

 

 

 The buoyancy force acts through the centroid of the displaced liquid volume.  

 It can be proven that the Buoyancy force equals the weight of the displaced 

 .liquid (المزاح)

 For equilibrium,     FB = W,  FB = γ Vdisplaced liquid  

 

Example: A 0.2 m cube is floating as shown, find the density of the cube material.  

Solution: 

Volume of the cube = 0.2 × 0.2 × 0.2  = 0.008 m³  

Weight of cube , w  =  γ Vdisplaced liquid 

Weight of cube displaced in water(=  γ Vdisplaced liquid) 

 = 9810 × 0.2× 0.2× 0.15  =  58.86 N 

Weight of cube , w  =  γ V 

58.86= γ (0.008) 

⸫  γ = ρ× 9.81  = 7357.5; ⸫  ρ= 750 m³/ Kg 

 

Example: A spherical object of 1.45m diameter is completely immersed in a water 

reservoir and chained to the bottom. If the chain has a tension of 5.20 kN, find the 

weight of the object when it is taken out of the reservoir into the air. 

Solution.     Given: d= 1.45 m;T= 5.20 kN. 

 

Buoyant force, FB=W (weight of the object) +T(tension in the chain) 

∴W=FB– T 

  

C.

g 
W 

BF 

0.05 

m 

0.15 

m 

Water 
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Hydrometer: an instrument used to measure the specific gravity of liquids. It 

consists of bulb and constant area stem. When placed in pure water the specific 

gravity is marked to read 1.0. The force balance is 

𝑊 = 𝛾𝑤𝑎𝑡𝑒𝑟  𝑉𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑      

Where W is the weight of the hydrometer and V is the submerged volume below 

the S=1.0 line. In an unknown liquid of specific gravity, γx,  a force balance would 

be: 

𝑊 = 𝛾𝑥(𝑉 − 𝐴 ∆ℎ) 

Where A is the cross-sectional area of the stem. Equating the two equations above 

gives 

∆ℎ =
𝑉

𝐴
(1 −

1

𝑆𝑥
) 

Where Sx =γx/ γwater 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Hydrometer: (a) in water, (b) in unknown liquid  
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 Stability 

Stability becomes an important consideration when floating bodies such as a boat 

or ferry is designed. It is an obvious requirement that a floating body such as a boat 

does not topple when slightly disturbed. We say that a body is in stable 

equilibrium if it is able to return to its position when slightly disturbed. Failure to 

do so denotes unstable equilibrium 

Stability of submerged bodies 

 

  

 

 

Stability of floating bodies: in this case, the stability is more complicated to deal with. 

When the body is slightly rotated about O, 

1- The center of gravity remains unchanged. 

2- The center of buoyancy is changed to C’ 

Unstable Neutral Stable 
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The center of the buoyancy (C, the centroid of the displaced volume of fluid) of a 

floating body depends on the shape of the body and on the position in which it is 

floating. 

Extending a line from C’ vertically. It will intercept with a line extended from the 

point O (axis of rotation) at a 

point M. This point M is 

called the Metacenter.  

Now: 

If M is above G, the body is 

stable, otherwise, it is 

unstable and according to the 

following relation: 

𝐺𝑀തതതതത =
𝐼𝑜

𝑉𝑑𝑖𝑠𝑝𝑙𝑎𝑐
∓ 𝐶𝐺തതതത 

Where 𝐺𝑀തതതതത : distance between G 

and M (metacentric height). 

+ ve sign : when G is lower than C 

– ve sign : when G is higher than C 

 

𝐶𝐺തതതത distance between C and G 

Io: second moment area of the waterline area about an axis passing through the Origin 

O. 

Vdisplac: Volume of displaced liquid or (submerged body) 

Example: A 0.25 long cylinder with 0.25 m diameter composed of material with 

density of ρ = 815 kg/m3. Will it float on water on its base?  

Solution: 

𝑮𝑴തതതതത  positive? If yes that lead to the body is stable. 

𝑮𝑴തതതതത  = negative       the body is unstable. 

 

 

 

 

𝐼𝑜 =
𝑏𝐿3

12
 

b: length into the paper L 

0.25 m 

h 
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Example: .A wooden block of specific gravity 0.75 

floats in water. If the size of the block is 

1m×0.5m×0.4m, find its metacentric height. 

Solution. 

Size of the block = 1m× 0.5m× 0.4m= 0.2 m3 

Specific gravity of wood = 0.75 

γ wood =0.75 × 9.81 = 7.36 kN/m3          Note in this example: B ≡ C 

Weight of wooden block = γ wood × volume 

= 7.36 × 1× 0.5 × 0.4 = 1.472 kN  

Let depth of immersion =h metres. 

Weight of water displaced = γ water × volume of the wood submerged in water 

   = 9.81 × 1 × 0.5 × h = 4.9 h  kN 
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Accelerated Fluid    FiveChapter  

Page 52 of 63 

Chapter-5 Accelerated Fluid (Forced Vortex Flow) 

When a fluid mass is moving with constant acceleration, we assume no relative motion 

between the fluid layers, i.e. no shear stress.  

1- Linear motion with constant acceleration. 

Assume a fluid in a vessel (of unit width), the vessel is moving with constant acceleration. 

 

 

 

 

 

 

 

 

 

Equation of Newton 2nd law in x-direction 

𝑚𝑎𝑥 = ∑ 𝐹𝑥  

𝑑𝑚𝑎𝑥 = 𝑃𝑑𝑦 − (𝑃 +
𝜕𝑃

𝜕𝑥
𝑑𝑥) 𝑑𝑦 

𝑑𝑚𝑎𝑥 = −
𝜕𝑃

𝜕𝑥
𝑑𝑥𝑑𝑦 

∴ 𝑎𝑥 = −
1

𝜌

𝜕𝑃

𝜕𝑥
                       (1)  

 

 

 

𝑃

+
𝜕𝑃

𝜕𝑥
𝑑𝑥 

𝑃

+
𝜕𝑃

𝜕𝑦
𝑑𝑦 

𝑃 

𝑃 

𝑔(𝑑𝑚)

𝑑𝑦 
𝑑𝑥 

𝑎𝑥 

𝑎𝑦 𝑎 

𝑑𝑥 

𝑑𝑦 

∆𝑥 

∆𝑦 

𝜃 

*These results are independent of the size or 

shape of the container as long as the fluid is 

continuously connected throughout the container. 



Accelerated Fluid    FiveChapter  

Page 53 of 63 

Equation of Newton 2nd law in y-direction 

𝑚𝑎𝑦 = ∑ 𝐹𝑦  

𝑑𝑚𝑎𝑦 = 𝑃𝑑𝑥 − (𝑃 +
𝜕𝑃

𝜕𝑦
𝑑𝑦) 𝑑𝑥 − 𝑔𝑑𝑚    

𝑑𝑚𝑎𝑦 = −
𝜕𝑃

𝜕𝑦
𝑑𝑥𝑑𝑦 − 𝑔𝑑𝑚 

𝑑𝑚 = 𝜌(𝑑𝑥 ∗ 𝑑𝑦 ∗ 1) 

∴ 𝑎𝑦 = −𝑔 −
1

𝜌

𝜕𝑃

𝜕𝑦
                                               (2) 

Note: if  ay = 0, the pressure along y direction will vary hydrostatically i.e. P = γh.  

But, 𝑑𝑃 =
𝜕𝑃

𝜕𝑥
𝑑𝑥 +

𝜕𝑃

𝜕𝑦
𝑑𝑦 

Hence, from equations (1) and (2), 

𝒅𝑷 = −𝝆𝒂𝒙𝒅𝒙 − (𝝆𝒈 + 𝝆𝒂𝒚)𝒅𝒚                     (3) 

The line of constant pressure, can be found from the above equation, 

 

 by setting dP = 0 

 𝜌𝑎𝑥𝑑𝑥 = −𝜌(𝑔 + 𝑎𝑦)𝑑𝑦 

∴
𝒅𝒚

𝒅𝒙
= −

𝒂𝒙

𝒈+𝒂𝒚
= 𝐭𝐚𝐧 𝜽    (negative slope).     

The line of constant pressure is free surface itself. 

for free surface 
𝒚

𝒙
= −

𝒂𝒙

𝒈+𝒂𝒚
  

 

𝑷𝒓𝒆𝒔𝒖𝒓𝒆 𝒂𝒕 𝒂𝒏𝒚 𝒑𝒐𝒊𝒏𝒕 𝒂 𝑃𝑎 =  𝜌. 𝐺. ∆𝑠 𝑤ℎ𝑒𝑟𝑒 ∆𝑠 = ℎ. 𝑐𝑜𝑠(𝜃) 
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Example 01: A drag racer rests her coffee mug 

on a horizontal tray while she accelerates at 7 

m/s2. The mug is 10 cm deep and 6 cm in 

diameter and contains coffee 7 cm deep at rest. 

(a) Assuming rigid-body acceleration of the 

coffee, determine whether it will spill out of the 

mug. (b) Calculate the gage pressure in the 

corner at point A if the density of coffee is 1010 

kg/m3. 

Solution 

a)) The free surface tilts at the angle 𝜽 given by above Eq. regardless of the 

shape of the mug. With az = 0 and standard gravity, 

 

 

If the mug is symmetric about its central axis, the volume of coffee is 

conserved if the tilted surface intersects the original rest surface exactly at 

the centerline, as shown in Fig. 

 

Thus the deflection at the left side of the mug is 

z = (3 cm)(tan 𝜽) = 2.14 cm                                         Ans. (a) 

This is less than the 3-cm clearance available, so the coffee will not spill 

unless it was sloshed during the start-up of acceleration. 
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b)) When at rest, the gage pressure at point A is given 

 

During acceleration, applies, with G= [(7.0)2 (9.81)2]1/2 = 12.05 m/s2.  

The distance ∆s down the normal from the tilted surface to point A is 

 

∆s= (7.0+ 2.14) (cos θ) = 7.44 cm 

Thus the pressure at point A becomes 

pA= ρ G ∆s=1010(12.05)(0.0744)=  906 Pa 

 

which is an increase of 31 percent over the pressure when at 

rest. 

Ans. (b) 

 

 

 

 

 

 

 

 

Solution 

 
 

1.1: 𝑎𝑡 max(𝑎) 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑠𝑝𝑖𝑙𝑙 𝑉1
= 𝑉2 → 2𝑥5𝑥2

= (
2.5 + 𝑦

2
)𝑥5𝑥2 → 𝑦 = 1.5𝑚 

𝑡𝑎𝑛𝜃 =
𝑎

𝑔
  𝑎𝑛𝑑 𝑀𝑎𝑥 𝑎 𝑤ℎ𝑒𝑛 𝑡𝑎𝑛𝜃 =

2.5−1.5

5
=

𝑎

9.81
  → 𝑎 = 1.96 𝑚/𝑠2    

1.2: 𝐹 = 𝑚𝑥𝑎 = 𝜌. 𝑉. 𝑎 = 1000 ∗ 2 ∗ 5 ∗ 2 ∗ 1.962 = 39240𝑁 ≈ 39.24𝐾𝑁 

1.3: 𝑎 = 6 → 𝑡𝑎𝑛𝜃 =
6

9.81
=

2.5

𝑥
→ 𝑥 = 4.08𝑚 

∴ 𝑉3 = 0.5𝑥4.08𝑥2.5𝑥2 = 10.21 𝑚3 ,  → 𝑉𝑠𝑝𝑖𝑙𝑙 = 𝑉1 − 𝑉3 = (2𝑥5𝑥2) − 10.21 =
9.78 𝑚3 



Accelerated Fluid    FiveChapter  

Page 56 of 63 

.  

Solution: 

 

 

 

 

 

 

 

 

 

Example H.W.1 

The tank shown in Fig. 1a is accelerated to the right. Calculate the acceleration ax needed to cause 

the free surface shown in Fig. 1b to touch point A. Calculate also the pressure at point B. 

 

 

 

 

 

Example HW.2 

A closed box with horizontal base of 6x6 m and height of 2 m is half filled with water. It is given ax 

=g/2 and ay=-g/4. Find the pressure at point b as shown.  

 

` 

 

 

 

1:  𝑎𝑥 = 𝑎1. 𝑐𝑜𝑠𝛼 = 1.2 cos(15) = 1.16 𝑚/𝑠2 

𝑎𝑧 = 𝑎1. 𝑠𝑖𝑛𝛼 = 1.2 sin(15) = 0.31 𝑚/𝑠2 

𝜃 = 𝑡𝑎𝑛−1 (
−𝑎𝑥

𝑔 + 𝑎𝑧
) = (

−1.16

9.81 + 0.31
) = −6.533𝑜  

2:  𝑎𝑥 = −𝑎1. 𝑐𝑜𝑠𝛼 = −1.2 cos(15) = −1.16 𝑚/𝑠2 

𝑎𝑧 = −𝑎1. 𝑠𝑖𝑛𝛼 = −1.2 sin(15) = −0.31 𝑚/𝑠2 

𝜃 = 𝑡𝑎𝑛−1 (
−𝑎𝑥

𝑔 + 𝑎𝑧
) = (

+1.16

9.81 − 0.31
) = 6.96𝑜  

xa 

ya 

B A 

 

0.5 m 

2 m 

8 m 

Water 

Air 

A 

B C 

Water 

Air 
0.2 m 

1 m 

2 m 2 m 

A B 

xa 

A B 

 

Fig. 1a Fig. 1b 

 
C C 
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2- Rotation with constant acceleration 

Assumptions: 

 No pressure variation with θ direction 

 The horizontal rotation will not alter the pressure distribution in the vertical direction (i.e. 

the pressure equals to P = γh).  

 

Applying Newton’s 2nd low in r-direction: 

 −𝑚𝑎𝑟 = ∑ 𝐹𝑟  

 

 

 

 

 

 

 

 

 

 

 

−𝑑𝑚 𝑎𝑟 = ∑ 𝐹𝑟  

−𝜌𝑟𝑑𝜃𝑑𝑟𝑑𝑧 𝑎𝑟 = 𝑃𝑟𝑑𝜃𝑑𝑧 − (𝑃 +
𝜕𝑃

𝜕𝑟
𝑑𝑟) 𝑑𝑧 𝑟 𝑑𝜃 

∴
𝜕𝑃

𝜕𝑟
= 𝜌 𝑎𝑟 

𝑎𝑟 = 𝑟𝜔2 

∴
𝜕𝑃

𝜕𝑟
= 𝜌 𝑟𝜔2                              (1)  

 

−𝑚𝑎𝑧 = ∑ 𝐹𝑧 = 0 ,   𝑎𝑧 = 0  

𝑃 𝑟𝑑𝜃 𝑑𝑟 − (𝑃 +
𝜕𝑃

𝜕𝑧
𝑑𝑧) 𝑟 𝑑𝑟 𝑑𝜃 − 𝜌 𝑟 𝑑𝑟 𝑑𝜃 𝑑𝑧 𝑔 = 0 

∴
𝜕𝑃

𝜕𝑧
= −𝜌 𝑔                                (2)  

𝑧 

 

 

𝑟 

𝜔 

 

 

𝑃 +
𝑑𝑃

𝑑𝑟
𝑑𝑟 

 

𝑃 +
𝑑𝑃

𝑑𝑧
𝑑𝑧 

 

𝑃 

𝑃 

𝑔(𝑑𝑚) 

𝑑𝑧 
𝑑𝑟 

𝑑𝜃 

𝑑𝑟 

𝑟 

𝑎𝑟 
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But, 𝑑𝑃 =
𝜕𝑃

𝜕𝑟
𝑑𝑟 +

𝜕𝑃

𝜕𝑧
𝑑𝑧 

𝒅𝑷 = 𝝆 𝒓 𝝎𝟐𝒅𝒓 − 𝝆𝒈 𝒅𝒛                     (3)   

→Pressure at any Point P(r,z):  𝑷 =
𝟏

𝟐
𝝆 𝒓𝟐 𝝎𝟐 − 𝝆𝒈𝒛                      

on the free surface, dP = 0 . 

𝜔2 (
𝑟2

2

2
−

𝑟1
2

2
) = 𝑔(𝑧2 − 𝑧1) 

If we put point 1 at the z-axis so that r1 = 0 

𝜔2 𝑟2
2

2
= 𝑔(𝑧2 − 𝑧1)  Equation of Parabola. 

Example 04 

The coffee cup in Example above is removed from the drag 

racer, placed on a turntable, and rotated about its central axis 

until a rigid-body mode occurs. Find (a) the angular velocity 

which will cause the coffee to just reach the lip of the cup 

and (b) the gage pressure at point A for this condition. 

Solution 

a) The cup contains 7 cm of coffee. The remaining distance 

of 3 cm up to the lip must equal the distance h/2 in Fig. 

Thus 

 

b) To compute the pressure, it is convenient to put the origin of coordinates r and z at 

the bottom of the free-surface depression, as shown in Fig. The gage pressure here is 

p0 = 0, and point A is at (r, z) =  (3 cm, -4 cm). Equation (3) can then be evaluated 

𝑷 − 𝑷𝟎 =
𝟏

𝟐
𝝆 𝒓𝟐 𝝎𝟐 − 𝝆𝒈𝒛 

pA = 0 +
𝟏

𝟐
 (1010 kg/m3)(0.03 m)2(1308 rad2/s) 2- (1010 kg/m3)(9.81 m/s2)(-0.04 m) 

= 396 N/m2 + 594 N/m2 = 990 Pa 

This is about 43 percent greater than the still-water pressure pA  = 694 Pa 

For a cylinder rotating about its central axis 
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Example 05 

A 16-cm-diameter open cylinder 27 cm high is full of water. Compute the rigid-body 

rotation rate about its central axis, in r/min, (a) for which one-third of the water will 

spill out and (b) for which the bottom will be barely exposed. 

Solution: 

(a) One-third will spill out if the resulting paraboloid surface 

is 18 cm deep: 

 

 

 

b) The bottom is barely exposed if the paraboloid surface is 27 cm deep: 

 

 

Example 06 

A 0.225mdiameter cylinder is1.5mlong and contains water up to a height of 1.05m. 

Estimate the speed at which the cylinder may be rotated about its vertical axis so that 

the axial depth becomes zero.  

Also, find the difference in total pressure force due to rotation: 

(i) At the bottom of cylinder, and 

(ii) On the sides of the cylinder 

Solution.  
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Example hw 

A water-filled cylinder is rotating about its center line. Calculate the rotational speed that is 

necessary for the water to just touch the origin and the pressures at A and B. 



Solved examples 
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